机器学习(ML)模型与它们在分子动力学研究中的有用性相反,作为反应屏障搜索的替代潜力,成功的成功有限。这是由于化学空间相关过渡状态区域中训练数据的稀缺性。当前,用于培训小分子系统上的ML模型的可用数据集几乎仅包含在平衡处或附近的配置。在这项工作中,我们介绍了包含960万密度函数理论(DFT)的数据集过渡1X的计算,对WB97X/6-31G(D)理论水平的反应途径上和周围的分子构型的力和能量计算。数据是通过在10K反应上以DFT运行轻度弹性带(NEB)计算而生成的,同时保存中间计算。我们在Transition1x上训练最先进的等效图形消息通讯神经网络模型,并在流行的ANI1X和QM9数据集上进行交叉验证。我们表明,ML模型不能仅通过迄今为止流行的基准数据集进行过渡状态区域的特征。 Transition1x是一种新的具有挑战性的基准,它将为开发下一代ML力场提供一个重要的步骤,该电场也远离平衡配置和反应性系统。
translated by 谷歌翻译
机器学习(ML)模型与它们在分子动力学研究中的有用性相反,作为反应屏障搜索的替代潜力,成功的成功有限。这是由于化学空间相关过渡状态区域中训练数据的稀缺性。当前,用于培训小分子系统上的ML模型的可用数据集几乎仅包含在平衡处或附近的配置。在这项工作中,我们介绍了包含960万密度函数理论(DFT)的数据集过渡1X的计算,对WB97X/6-31G(D)理论水平的反应途径上和周围的分子构型的力和能量计算。数据是通过在10K反应上以DFT运行轻度弹性带(NEB)计算而生成的,同时保存中间计算。我们在Transition1x上训练最先进的等效图形消息通讯神经网络模型,并在流行的ANI1X和QM9数据集上进行交叉验证。我们表明,ML模型不能仅通过迄今为止流行的基准数据集进行过渡状态区域的特征。 Transition1x是一种新的具有挑战性的基准,它将为开发下一代ML力场提供一个重要的步骤,该电场也远离平衡配置和反应性系统。
translated by 谷歌翻译
基于机器学习的数据驱动方法具有加速原子结构的计算分析。在这种情况下,可靠的不确定性估计对于评估对预测和实现决策的信心很重要。然而,机器学习模型可以产生严重校准的不确定性估计,因此仔细检测和处理不确定性至关重要。在这项工作中,我们扩展了一种消息,该消息通过神经网络,专门用于预测分子和材料的性质,具有校准的概率预测分布。本文提出的方法与先前的工作不同,通过考虑统一框架中的炼体和认知的不确定性,并通过重新校准未经证明数据的预测分布。通过计算机实验,我们表明我们的方法导致准确的模型,用于预测两种公共分子基准数据集,QM9和PC9的训练数据分布良好的分子形成能量。该方法提供了一种用于训练和评估神经网络集合模型的一般框架,该模型能够产生具有良好校准的不确定性估计的分子性质的准确预测。
translated by 谷歌翻译